Maximum Entropy Gibbs Density Modeling for Pattern Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Entropy Gibbs Density Modeling for Pattern Classification

Recent studies have shown that the Gibbs density function is a good model for visual patterns and that its parameters can be learned from pattern category training data by a gradient algorithm optimizing a constrained entropy criterion. These studies represented each pattern category by a single density. However, the patterns in a category can be so complex as to require a representation spread...

متن کامل

Maximum Entropy Density Estimation and Modeling Geographic Distributions of Species

Maximum entropy (maxent) approach, formally equivalent to maximum likelihood, is a widely used density-estimation method. When input datasets are small, maxent is likely to overfit. Overfitting can be eliminated by various smoothing techniques, such as regularization and constraint relaxation, but theory explaining their properties is often missing or needs to be derived for each case separatel...

متن کامل

Maximum Entropy Modeling Toolkit

The Maximum Entropy Modeling Toolkit supports parameter estimation and prediction for statistical language models in the maximum entropy framework. The maximum entropy framework provides a constructive method for obtaining the unique conditional distribution p*(y|x) that satisfies a set of linear constraints and maximizes the conditional entropy H(p|f) with respect to the empirical distribution...

متن کامل

Using Maximum Entropy for Text Classification

This paper proposes the use of maximum entropy techniques for text classification. Maximum entropy is a probability distribution estimation technique widely used for a variety of natural language tasks, such as language modeling, part-of-speech tagging, and text segmentation. The underlying principle of maximum entropy is that without external knowledge, one should prefer distributions that are...

متن کامل

Maximum Entropy Models for FrameNet Classification

The development of FrameNet, a large database of semantically annotated sentences, has primed research into statistical methods for semantic tagging. We advance previous work by adopting a Maximum Entropy approach and by using previous tag information to find the highest probability tag sequence for a given sentence. Further we examine the use of sentence level syntactic pattern features to inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2012

ISSN: 1099-4300

DOI: 10.3390/e14122478